

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1024600H3TMQW-T00H
APPROVED BY	
DATE	

- ☐ Approved For Specifications
- ☐ Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

APPROVED BY	CHECKED BY	ORGANIZED BY

1

Date: 2019/01/09 AMPIRE CO., LTD.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2019/01/09	-	New Release	Mark

1. GENERAL DESCRIPTION

1.1 Introduction

This is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT LCD panel, a driving circuit and a back light system. This TFT LCD has a 10.1 (16:9) inch diagonally measured active display area with WVGA (1024 horizontal by 600 vertical pixels) resolution.

1.2 Features

- 10.1" (16:9 diagonal) Inch configuration.
- 16.2M color by 6 bit +Hi-FRC input
- 1024600L3 REV.C PCB with DC/DC
- Resistive touch panel
- External LED Driver Board

1.3 General information

Item	Specifications	unit
Outline Dimension	235.0 x 145.8 x 8.75	mm
Display area	222.72(H) x 125.28(V)	mm
Number of Pixel	1024 RGB (H) x 600(V)	Pixels
Pixel pitch	0.2175(H) x 0.2088(V)	mm
Pixel arrangement	RGB Vertical stripe	
Display mode	Normally white	
Surface treatment	Antiglare,	
Back-light	White LED	
Power Consumption Display only B/L sys	stem 2.688 (typ.)	W

2. ABSOLUTE MAXIMUM RATINGS

2.1 Electrical Absolute Rating

2.1.1 TFT LCD Module

Item	Symbol	. Values		UNIT	Note
item	Cyllibol	Min.	Max.	01411	Note
LED driver Power Supply Voltage	VLED	-0.3	15.0	V	GND=0
Logic Supply Voltage	Vdd	-0.3	5.0	V	
Operating Temperature	Тора	-20	70	°C	
Storage Temperature	Тѕтс	-30	80	°C	

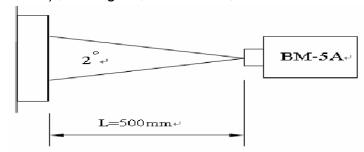
2.1.2 Backlight unit

Item	Symbol	Тур.	Max.	Unit	Note
LED current	I _L	140	-	mA	(1) (2)(3)
LED voltage	V _L	19.2	20.4	V	(1) (2)(3)
LED reverse voltage	V_R		5	V	
LED forward current	I _F		20	mA	

Note:

- (1) Permanent damage may occur to the LCD module if beyond this specification. Functional operation should be restricted to the conditions described under normal operating conditions.
- (2) Ta =25±2°C

Date: 2019/01/09


(3) Test Condition: LED current 140 mA. The LED lifetime could be decreased if operating IL is larger than 140mA.

3. OPTICAL CHARACTERISTICS

It	tem		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast ratio		CR		400	500			(1)(2)(3)	
Luminance)		Lw	D : 1 E	320	400	-	cd/m²	(1)(3)
Luminance	e Unifo	ormity	ΔL	Point - 5 Θ=Φ=0°	70	80	-	%	(1)(3)
Response Time (White – Black)		T _r +T _f	0 + 0		16	32	ms	(1)(3)(5)	
Viewing	Ve	ertical	Θ	CR≧10	120	150	-	Dog	(4)(0)(4)
Angle	•		Ф	Point – 5	130	160	-	Deg.	(1)(2)(4)
	Red		Rx	Rx	0.555	0.605	0.655		
		Neu	Ry		0.277	0.327	0.377		
		Gx			0.236	0.286	0.336		
Color	Green		Gy	Point - 5	0.476	0.526	0.576		(4)(2)
chromaticity		Blue	Вх	Θ=Ф=0°	0.100	0.150	0.200		(1)(3)
		blue	Ву		0.095	0.145	0.195		
		\\/bito	Wx		0.263	0.313	0.363		
	White		Wy		0.279	0.329	0.379		

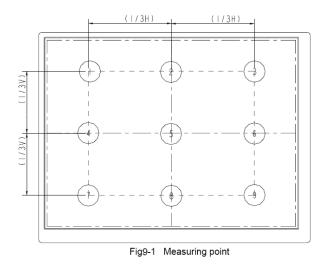
NOTE:

(1) Measure conditions : 25° C ± 2° C , $60\pm10\%$ RH under 10Lux , in the dark room by BM-7TOPCON) ,viewing 2° , VCC=3.3V , VDD=3.3V

(2) Definition of Contrast Ratio:

Contrast Ratio (CR) = (White) Luminance of ON ÷ (Black) Luminance of OFF

(3) Definition of Luminance:


Date: 2019/01/09

Definition of Luminance Uniformity

Measure white luminance on the point 5 as figure 9-1

Measure white luminance on the point 1 ~ 9 as figure9-1

 $\Delta L = [L(MIN) / L(MAX)] \times 100\%$

(4) Definition of Viewing Angle(Θ , Φ), refer to Fig9-2 as below :

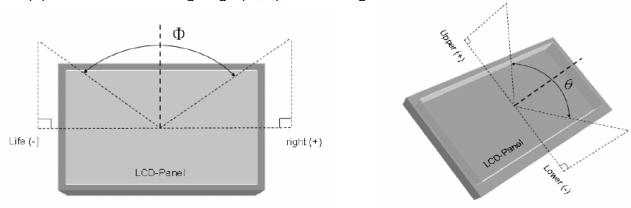


Fig9-2 Definition of Viewing Angle

(5) Definition of Response Time.(White – Black)

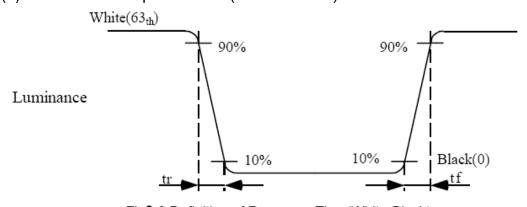


Fig9-3 Definition of Response Time(White-Black)

- (6) End of Life shall be determined by the time when any of the following is satisfied under continuous lighting at $25^{\circ}\mathrm{C}$
 - Intensity drops to 50% of the Initial Value (Min. Luminance)
 - Based on LED
 - It is an estimative value

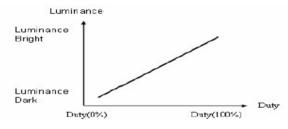
4. Pin Definition

4.1 TFT Module

CN1(Input signal): CSTAR DS100-430-H23 (equivalent JAE FI-XB30SSRL-HF16)

Pin No.	Symbol	Description	Note
1	GND	Ground	
2	VDD	3.3V Power	
3	VDD	3.3V Power	
4	V_EDID	3.3V Power for EDID	
5	NC	No connection	
6	CLK_EDID	EDID Clock Input	
7	DATA_EDID	EDID Data Input	
8	RXIN0-	LVDS Signal - channel0-	
9	RXIN0+	LVDS Signal+ channel0+	
10	GND	Ground	
11	RXIN1-	Data Input channel1-	
12	RXIN1+	Data Input channel1+	
13	GND	Ground	
14	RXIN2-	Data Input channel2-	
15	RXIN2+	Data Input channel2+	
16	GND	Ground	
17	RXCLKIN-	Data Input CLK-	
18	RXCLKIN+	Data Input CLK+	
19	GND	Ground	
20	NC	No connection	
21	NC	No connection	
22	GND	Ground	
23	GND	Ground	
24	NC	No connection	
25	NC	No connection	

26	NC	No connection	
27	NC	No connection	
28	NC	No connection	
29	NC	No connection	
30	NC	No connection	


CN2(LED backlight): BHSR-02VS-1 (JST or equivalent)

Pin No.	Symbol	Description	Note
1	А	Anode for LED backlight	
2	K	Cathode for LED backlight	

CN2(LED Driver Board): FPHTI-104TTW000(Kingfont or equivalent)

Pin No.	Symbol	Description	Note
1	+12V	Voltage for LED circuit (+12V)	
2	LED_EN	LED BLU ON/OFF	
3	GND	Power ground	
4	PWM	Adjust the LED brightness by PWM	

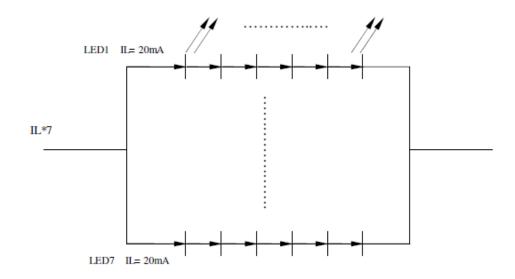
Note* : The brightness of LCD panel could be changed by adjusting ADJ [Note]
(1) ADJ can adjust brightness to control Pin. Pulse duty the bigger the brighter.

(2) ADJ Signal=0~3.3V , Operation Frequency :

Dimming Range		
PWM Frequency (F)	Duty Cycle (Min.)	Duty Cycle (Max.)
100Hz < F < 500Hz	5%	100%
500Hz < F < 20KHz	10%	100%
		← 3.3V

Duty Cycle = t / T *100%

5 Back-Light Unit


Date: 2019/01/09

Item	Symbol		Values	Unit	Note	
item		Min.	Тур.	Max.	Offic	Note
LED Driver voltage	VLED	9	12	15	V	
Power Supply Current For LED Driver	ILED	-	330	-	mA	VLED=12V VADJ=3.3V (duty 100%)
ADJ Input Voltage	V_{ADJ}	-	3.3	VLED	V	duty=100%
LED voltage	VAK	-1	19.2	20.4	V	I _L =140mA Ta=25℃
LED current	lι	1	140		mA	Note (1)
LED Life Time	-	20K	30K		Hour	Note (2)

Note (1) LED life time (Hr) can be defined as the time in which it continues to operate under the condition: $Ta=25\pm3$ $_{\circ}C$, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note (2) The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL=140mA. The LED lifetime could be decreased if operating IL is larger than 140mA. The constant current driving method is suggested.

Note (3) LED Light Bar Circuit

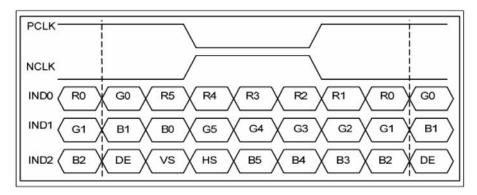
6 ELECTRICAL CHARACTERISTICS

6.1 TFT LCD Module

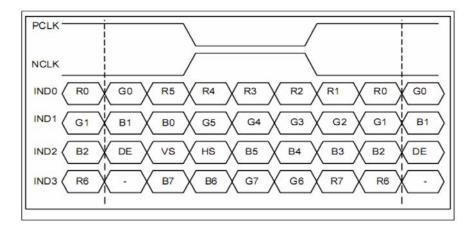
Item	Symbol		Values	UNIT	Note	
item		Min.	Тур.	Max.	ONII	Note
Power voltage	VDD	3.0	3.3	3.6	V	Note1
Current of power supply	IDD	-	0.3	-	А	VDD=3.3V Black pattern
Power voltage for LED driver	VLED	9.0	12.0	15.0	V	
LED driver current of power supply	ILED	-	330		mA	VLED=12V ADJ=100%

Note 1: VDD-dip condition :

when 2.7V \leq VDD<3.0V , td \leq 10ms.


VDD>3.0V $\,^{,}$ VDD-dip condition should be same as VDD-turn-con condition.

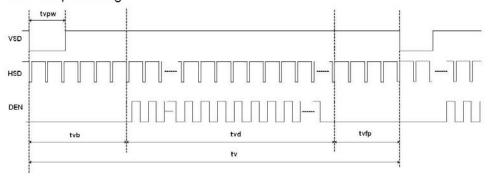
6.2 Switching Characteristics for LVDS Receiver


Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	-	=	100	mV	V 10V
Differential Input Low Threshold	VtI	-100			mV	V _{CM} =1.2V
Input Current	I _{IN}	-10		+10	uA	
Differential input Voltage	V _{ID}	0.1		0.6	V	
Common Mode Voltage Offset	V _{CM}	0.7	1.2	1.6	V	

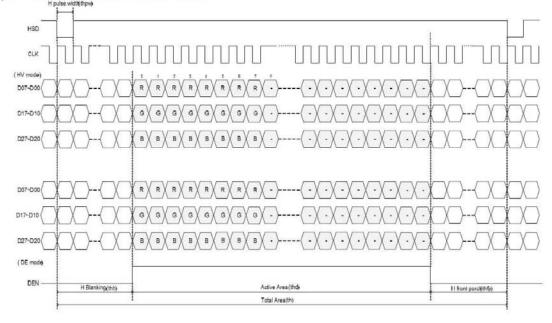
6.3 Bit LVDS input

6.3.1 6bit LVDS input

6.3.2 8Bit LVDS input



6.4 Interface Timing (DE mode)


Item	Symbol	Min.	Тур.	Max.	Unit
Frame Rate		55	60	65	Hz
Frame Period	t1	610	635	800	line
Vertical Display Time	t2	600	600	600	line
Vertical Blanking Time	t3	10	35	200	line
1 Line Scanning Time	t4	1164	1344	1400	clock
Horizontal Display Time	t5	1024	1024	1024	clock
Horizontal Blanking Time	t6	140	320	376	clock
Clock Rate	t7	42.6	51.2	72.8	MHz

Timing Diagram of Interface Signal (DE mode)

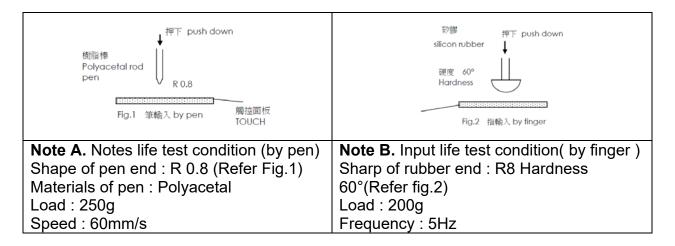
(1) Vertical input timing

(2) Horizontal Vertical input timing

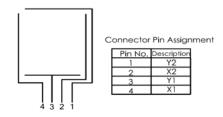
7 Touch Panel Unit

7.1 Touch Screen Panel Characteristics

7.2 Electrical characteristics


	ITEM	SPEIFICATION	REMARKS
1	Rated Voltage	DC 7V Max.	
2	Resistance	X axis : 250Ω ~ 1200Ω(FILM)	EDO 44
2		Y axis : 100Ω ~ 600Ω(GLASS)	FPC At connector
4	Chattering	10ms Max	
		At connector pin	
5	Insulation Resistance	25MΩ 以上(DC 25V)	
		25MΩ Min(DC 25V)	

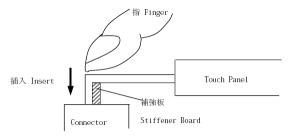
7.3 Life test condition


1.	2. ITEM	3. SPEIFICATION	4. REMARKS
5. 1	6. Notes life	7. 50000 words Min	8. Note A.
9. 2	10. Input life	11.10000000 times Min.	12. Note B.

Measurement condition of minimum input force

Resistance between X & Y axis must be equal or lower than $2k\Omega$ (Ron $\leq 2k\Omega$)

7.4 Touch Screen Pane & Interface



No.	Symbol	Function
1	Y2	Touch Panel Top Signal in Y Axis
2	X2	Touch Panel Right Signal in X Axis
3	Y1	Touch Panel Bottom Signal in Y Axis
4	X1	Touch Panel Left Signal in X Axis

Attention

- (1) Since touch panel is consist of Glass, pls. be careful your hand and other part from injury at handling. You must wear gloves at handling.
- (2) Do not put a heavy shock or stress on touch panel.
- (3) Do not lift Touch Panel by cable (FPC).
- (4) Do not add any stress only film face.
- (Ex. Don't transfer the panel by film face with vacuum)
- (5) Pls. use dry cloth or soft cloth with neutral detergent (after wring dry) or one with ethanol at cleaning. Do not use any organic solvent, acid or alkali solution.
- (6) Do not pile Touch Panel. Do not put heavy goods on Touch Panel.
- (7) Do not bend a cable of Touch Panel for prevent happen to line cut failure.

Please don't uses following method for insert the cable to connector

- (8) Please pay attention for the matter as stated below at mounting design of touch panel & enclosure
- Enclosure support to fix touch panel must be out of view (transparent) area.
 (Do not design enclosure presses the view area to protect from miss input)
- Enclosure edge must be between view area & Guaranteed active area.
 (Enclosure edge must not touch with view area)
- -3. We recommend the material of support to fix touch panel is elastic material.
- -4. Do not bond top surface (film) of touch panel with enclosure.
- -5. The corner parts (fig.*) has conductivity. Do not touch any metal part after mounting.
- -6. Special design is required for water resistance use.

8. RELIABILITY TEST CONDITIONS

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2
Thermal Shock Test	-20°C (30min) ~ 70°C (30min) 100 cycles	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

Note 3 : The module shouldn't be tested more than one condition, and all the test conditions are independent.

Note 4: All the reliability tests should be done without protective film on the module.

9. General Precautions

9-1 Safety

Liquid crystal is poisonous. Do not put it your month. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

9-2 Handling

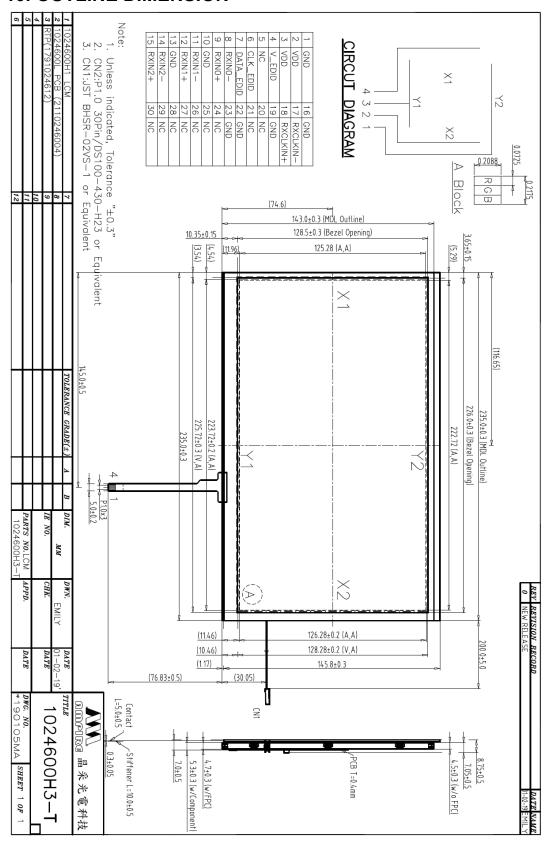
- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

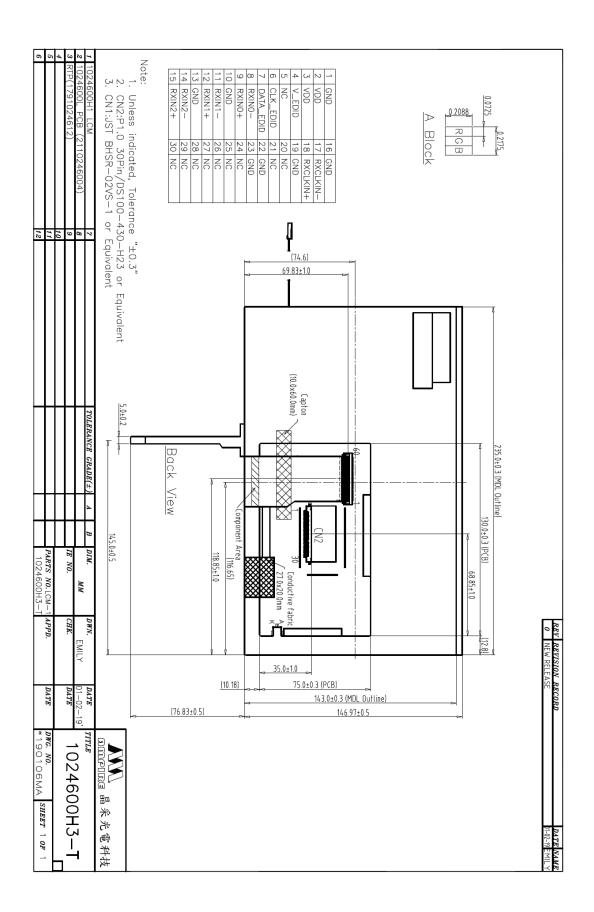
9-3 Static Electricity

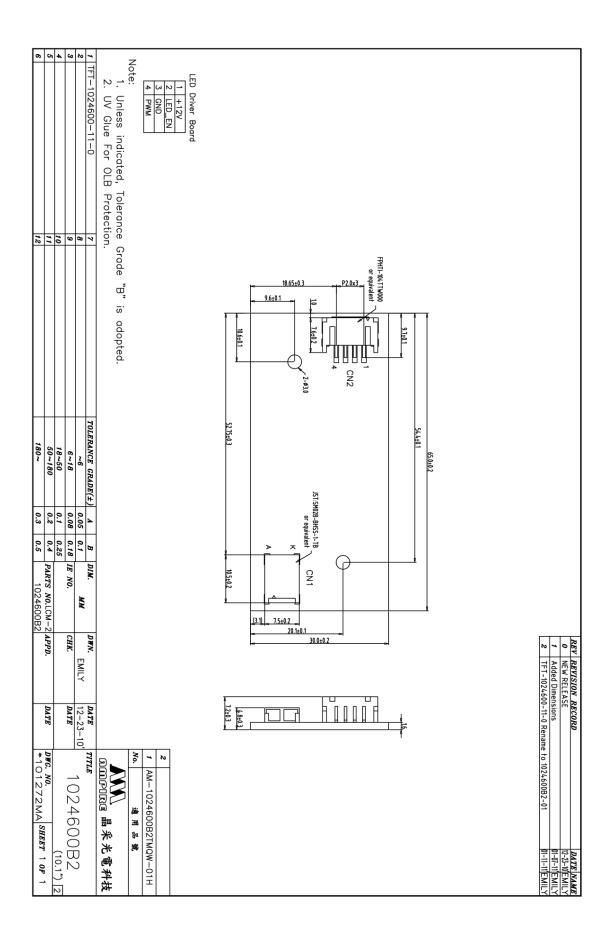
- 1. Be sure to ground module before turning on power or operation module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

9-4 Storage

- 1. Store the module in a dark room where must keep at +25±10℃ and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
- 3. Store the module in an anti-electrostatic container or bag.


9-5 Cleaning


- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.


9-6 Others

- 1. AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- 2. Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver

10. OUTLINE DIMENSION

